.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "tutorials/pde/1_poisson.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note :ref:`Go to the end ` to download the full example code. .. rst-class:: sphx-glr-example-title .. _sphx_glr_tutorials_pde_1_poisson.py: Gauss' Law of Electrostatics ============================ Here we use the discretize package to solve for the electric potential (:math:`\phi`) and electric fields (:math:`\mathbf{e}`) in 2D that result from a static charge distribution. Starting with Gauss' law and Faraday's law: .. math:: &\nabla \cdot \mathbf{E} = \frac{\rho}{\epsilon_0} \\ &\nabla \times \mathbf{E} = \mathbf{0} \;\;\; \Rightarrow \;\;\; \mathbf{E} = -\nabla \phi \\ &\textrm{s.t.} \;\;\; \phi \Big |_{\partial \Omega} = 0 where :math:`\sigma` is the charge density and :math:`\epsilon_0` is the permittivity of free space. We will consider the case where there is both a positive and a negative charge of equal magnitude within our domain. Thus: .. math:: \rho = \rho_0 \big [ \delta ( \mathbf{r_+}) - \delta (\mathbf{r_-} ) \big ] To solve this problem numerically, we use the weak formulation; that is, we take the inner product of each equation with an appropriate test function. Where :math:`\psi` is a scalar test function and :math:`\mathbf{f}` is a vector test function: .. math:: \int_\Omega \psi (\nabla \cdot \mathbf{E}) dV = \frac{1}{\epsilon_0} \int_\Omega \psi \rho dV \\ \int_\Omega \mathbf{f \cdot E} \, dV = - \int_\Omega \mathbf{f} \cdot (\nabla \phi ) dV In the case of Gauss' law, we have a volume integral containing the Dirac delta function, thus: .. math:: \int_\Omega \psi (\nabla \cdot \mathbf{E}) dV = \frac{1}{\epsilon_0} \psi \, q where :math:`q` represents an integrated charge density. By applying the finite volume approach to this expression we obtain: .. math:: \mathbf{\psi^T M_c D e} = \frac{1}{\epsilon_0} \mathbf{\psi^T q} where :math:`\mathbf{q}` denotes the total enclosed charge for each cell. Thus :math:`\mathbf{q_i}=\rho_0` for the cell containing the positive charge and :math:`\mathbf{q_i}=-\rho_0` for the cell containing the negative charge. It is zero for every other cell. :math:`\mathbf{\psi}` and :math:`\mathbf{q}` live at cell centers and :math:`\mathbf{e}` lives on cell faces. :math:`\mathbf{D}` is the discrete divergence operator. :math:`\mathbf{M_c}` is an inner product matrix for cell centered quantities. For the second weak form equation, we make use of the divergence theorem as follows: .. math:: \int_\Omega \mathbf{f \cdot E} \, dV &= - \int_\Omega \mathbf{f} \cdot (\nabla \phi ) dV \\ & = - \frac{1}{\epsilon_0} \int_\Omega \nabla \cdot (\mathbf{f} \phi ) dV + \frac{1}{\epsilon_0} \int_\Omega ( \nabla \cdot \mathbf{f} ) \phi \, dV \\ & = - \frac{1}{\epsilon_0} \int_{\partial \Omega} \mathbf{n} \cdot (\mathbf{f} \phi ) da + \frac{1}{\epsilon_0} \int_\Omega ( \nabla \cdot \mathbf{f} ) \phi \, dV \\ & = 0 + \frac{1}{\epsilon_0} \int_\Omega ( \nabla \cdot \mathbf{f} ) \phi \, dV where the surface integral is zero due to the boundary conditions we imposed. Evaluating this expression according to the finite volume approach we obtain: .. math:: \mathbf{f^T M_f e} = \mathbf{f^T D^T M_c \phi} where :math:`\mathbf{f}` lives on cell faces and :math:`\mathbf{M_f}` is the inner product matrix for quantities that live on cell faces. By canceling terms and combining the set of discrete equations we obtain: .. math:: \big [ \mathbf{M_c D M_f^{-1} D^T M_c} \big ] \mathbf{\phi} = \frac{1}{\epsilon_0} \mathbf{q} from which we can solve for :math:`\mathbf{\phi}`. The electric field can be obtained by computing: .. math:: \mathbf{e} = \mathbf{M_f^{-1} D^T M_c \phi} .. GENERATED FROM PYTHON SOURCE LINES 86-91 Import Packages --------------- Here we import the packages required for this tutorial. .. GENERATED FROM PYTHON SOURCE LINES 92-101 .. code-block:: Python from discretize import TensorMesh from scipy.sparse.linalg import spsolve import matplotlib.pyplot as plt import numpy as np from discretize.utils import sdiag .. GENERATED FROM PYTHON SOURCE LINES 102-105 Solving the Problem ------------------- .. GENERATED FROM PYTHON SOURCE LINES 106-148 .. code-block:: Python # Create a tensor mesh h = np.ones(75) mesh = TensorMesh([h, h], "CC") # Create system DIV = mesh.face_divergence # Faces to cell centers divergence Mf_inv = mesh.get_face_inner_product(invert_matrix=True) Mc = sdiag(mesh.cell_volumes) A = Mc * DIV * Mf_inv * DIV.T * Mc # Define RHS (charge distributions at cell centers) xycc = mesh.gridCC kneg = (xycc[:, 0] == -10) & (xycc[:, 1] == 0) # -ve charge distr. at (-10, 0) kpos = (xycc[:, 0] == 10) & (xycc[:, 1] == 0) # +ve charge distr. at (10, 0) rho = np.zeros(mesh.nC) rho[kneg] = -1 rho[kpos] = 1 # LU factorization and solve phi = spsolve(A, rho) # Compute electric fields E = Mf_inv * DIV.T * Mc * phi # Plotting fig = plt.figure(figsize=(14, 4)) ax1 = fig.add_subplot(131) mesh.plot_image(rho, v_type="CC", ax=ax1) ax1.set_title("Charge Density") ax2 = fig.add_subplot(132) mesh.plot_image(phi, v_type="CC", ax=ax2) ax2.set_title("Electric Potential") ax3 = fig.add_subplot(133) mesh.plot_image( E, ax=ax3, v_type="F", view="vec", stream_opts={"color": "w", "density": 1.0} ) ax3.set_title("Electric Fields") .. image-sg:: /tutorials/pde/images/sphx_glr_1_poisson_001.png :alt: Charge Density, Electric Potential, Electric Fields :srcset: /tutorials/pde/images/sphx_glr_1_poisson_001.png :class: sphx-glr-single-img .. rst-class:: sphx-glr-script-out .. code-block:: none Text(0.5, 1.0, 'Electric Fields') .. rst-class:: sphx-glr-timing **Total running time of the script:** (0 minutes 0.872 seconds) .. _sphx_glr_download_tutorials_pde_1_poisson.py: .. only:: html .. container:: sphx-glr-footer sphx-glr-footer-example .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: 1_poisson.ipynb <1_poisson.ipynb>` .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: 1_poisson.py <1_poisson.py>` .. container:: sphx-glr-download sphx-glr-download-zip :download:`Download zipped: 1_poisson.zip <1_poisson.zip>` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_