.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "tutorials/mesh_generation/2_tensor_mesh.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note :ref:`Go to the end ` to download the full example code. .. rst-class:: sphx-glr-example-title .. _sphx_glr_tutorials_mesh_generation_2_tensor_mesh.py: Tensor meshes ============= Tensor meshes are the most basic class of meshes that can be created with discretize. They belong to the class (:class:`~discretize.TensorMesh`). Tensor meshes can be defined in 1, 2 or 3 dimensions. Here we demonstrate: - How to create basic tensor meshes - How to include padding cells - How to plot tensor meshes - How to extract properties from meshes .. GENERATED FROM PYTHON SOURCE LINES 17-22 Import Packages --------------- Here we import the packages required for this tutorial. .. GENERATED FROM PYTHON SOURCE LINES 22-29 .. code-block:: Python from discretize import TensorMesh import matplotlib.pyplot as plt import numpy as np # sphinx_gallery_thumbnail_number = 3 .. GENERATED FROM PYTHON SOURCE LINES 30-38 Basic Example ------------- The easiest way to define a tensor mesh is to define the cell widths in x, y and z as 1D numpy arrays. And to provide the position of the bottom southwest corner of the mesh. We demonstrate this here for a 2D mesh (thus we do not need to consider the z-dimension). .. GENERATED FROM PYTHON SOURCE LINES 38-54 .. code-block:: Python ncx = 10 # number of core mesh cells in x ncy = 15 # number of core mesh cells in y dx = 15 # base cell width x dy = 10 # base cell width y hx = dx * np.ones(ncx) hy = dy * np.ones(ncy) x0 = 0 y0 = -150 mesh = TensorMesh([hx, hy], x0=[x0, y0]) mesh.plot_grid() .. image-sg:: /tutorials/mesh_generation/images/sphx_glr_2_tensor_mesh_001.png :alt: 2 tensor mesh :srcset: /tutorials/mesh_generation/images/sphx_glr_2_tensor_mesh_001.png :class: sphx-glr-single-img .. rst-class:: sphx-glr-script-out .. code-block:: none .. GENERATED FROM PYTHON SOURCE LINES 55-63 Padding Cells and Plotting -------------------------- For practical purposes, the user may want to define a region where the cell widths are increasing/decreasing in size. For example, padding is often used to define a large domain while reducing the total number of mesh cells. Here we demonstrate how to create tensor meshes that have padding cells. .. GENERATED FROM PYTHON SOURCE LINES 63-92 .. code-block:: Python ncx = 10 # number of core mesh cells in x ncy = 15 # number of core mesh cells in y dx = 15 # base cell width x dy = 10 # base cell width y npad_x = 4 # number of padding cells in x npad_y = 4 # number of padding cells in y exp_x = 1.25 # expansion rate of padding cells in x exp_y = 1.25 # expansion rate of padding cells in y # Use a list of tuples to define cell widths in each direction. Each tuple # contains the cell width, number of cells and the expansion factor. A # negative sign is used to indicate an interval where cells widths go # from largest to smallest. hx = [(dx, npad_x, -exp_x), (dx, ncx), (dx, npad_x, exp_x)] hy = [(dy, npad_y, -exp_y), (dy, ncy), (dy, npad_y, exp_y)] # We can use flags 'C', '0' and 'N' to shift the xyz position of the mesh # relative to the origin mesh = TensorMesh([hx, hy], x0="CN") # We can apply the plot_grid method and output to a specified axes object fig = plt.figure(figsize=(6, 6)) ax = fig.add_subplot(111) mesh.plot_grid(ax=ax) ax.set_xbound(mesh.x0[0], mesh.x0[0] + np.sum(mesh.h[0])) ax.set_ybound(mesh.x0[1], mesh.x0[1] + np.sum(mesh.h[1])) ax.set_title("Tensor Mesh") .. image-sg:: /tutorials/mesh_generation/images/sphx_glr_2_tensor_mesh_002.png :alt: Tensor Mesh :srcset: /tutorials/mesh_generation/images/sphx_glr_2_tensor_mesh_002.png :class: sphx-glr-single-img .. rst-class:: sphx-glr-script-out .. code-block:: none Text(0.5, 1.0, 'Tensor Mesh') .. GENERATED FROM PYTHON SOURCE LINES 93-99 Extracting Mesh Properties -------------------------- Once the mesh is created, you may want to extract certain properties. Here, we show some properties that can be extracted from 2D meshes. .. GENERATED FROM PYTHON SOURCE LINES 99-137 .. code-block:: Python ncx = 10 # number of core mesh cells in x ncy = 15 # number of core mesh cells in y dx = 15 # base cell width x dy = 10 # base cell width y npad_x = 4 # number of padding cells in x npad_y = 4 # number of padding cells in y exp_x = 1.25 # expansion rate of padding cells in x exp_y = 1.25 # expansion rate of padding cells in y hx = [(dx, npad_x, -exp_x), (dx, ncx), (dx, npad_x, exp_x)] hy = [(dy, npad_y, -exp_y), (dy, ncy), (dy, npad_y, exp_y)] mesh = TensorMesh([hx, hy], x0="C0") # The bottom west corner x0 = mesh.x0 # The total number of cells nC = mesh.nC # An (nC, 2) array containing the cell-center locations cc = mesh.gridCC # A boolean array specifying which cells lie on the boundary bInd = mesh.cell_boundary_indices # Plot the cell areas (2D "volume") s = mesh.cell_volumes fig = plt.figure(figsize=(6, 6)) ax = fig.add_subplot(111) mesh.plot_image(s, grid=True, ax=ax) ax.set_xbound(mesh.x0[0], mesh.x0[0] + np.sum(mesh.h[0])) ax.set_ybound(mesh.x0[1], mesh.x0[1] + np.sum(mesh.h[1])) ax.set_title("Cell Areas") .. image-sg:: /tutorials/mesh_generation/images/sphx_glr_2_tensor_mesh_003.png :alt: Cell Areas :srcset: /tutorials/mesh_generation/images/sphx_glr_2_tensor_mesh_003.png :class: sphx-glr-single-img .. rst-class:: sphx-glr-script-out .. code-block:: none Text(0.5, 1.0, 'Cell Areas') .. GENERATED FROM PYTHON SOURCE LINES 138-144 3D Example ---------- Here we show how the same approach can be used to create and extract properties from a 3D tensor mesh. .. GENERATED FROM PYTHON SOURCE LINES 144-179 .. code-block:: Python nc = 10 # number of core mesh cells in x, y and z dh = 10 # base cell width in x, y and z npad = 5 # number of padding cells exp = 1.25 # expansion rate of padding cells h = [(dh, npad, -exp), (dh, nc), (dh, npad, exp)] mesh = TensorMesh([h, h, h], x0="C00") # The bottom southwest corner x0 = mesh.x0 # The total number of cells nC = mesh.nC # An (nC, 3) array containing the cell-center locations cc = mesh.gridCC # A boolean array specifying which cells lie on the boundary bInd = mesh.cell_boundary_indices # The cell volumes v = mesh.cell_volumes # Plot all cells volumes or plot cell volumes for a particular horizontal slice fig = plt.figure(figsize=(9, 4)) ax1 = fig.add_subplot(121) ax2 = fig.add_subplot(122) mesh.plot_image(np.log10(v), grid=True, ax=ax1) ax1.set_title("All Cell Log-Volumes") cplot = mesh.plot_slice(np.log10(v), grid=True, ax=ax2, normal="Z", ind=2) cplot[0].set_clim(np.min(np.log10(v)), np.max(np.log10(v))) ax2.set_title("Cell Log-Volumes #2") .. image-sg:: /tutorials/mesh_generation/images/sphx_glr_2_tensor_mesh_004.png :alt: All Cell Log-Volumes, Cell Log-Volumes #2 :srcset: /tutorials/mesh_generation/images/sphx_glr_2_tensor_mesh_004.png :class: sphx-glr-single-img .. rst-class:: sphx-glr-script-out .. code-block:: none Text(0.5, 1.0, 'Cell Log-Volumes #2') .. rst-class:: sphx-glr-timing **Total running time of the script:** (0 minutes 0.445 seconds) .. _sphx_glr_download_tutorials_mesh_generation_2_tensor_mesh.py: .. only:: html .. container:: sphx-glr-footer sphx-glr-footer-example .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: 2_tensor_mesh.ipynb <2_tensor_mesh.ipynb>` .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: 2_tensor_mesh.py <2_tensor_mesh.py>` .. container:: sphx-glr-download sphx-glr-download-zip :download:`Download zipped: 2_tensor_mesh.zip <2_tensor_mesh.zip>` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_