.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "tutorials/inner_products/1_basic.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note :ref:`Go to the end ` to download the full example code. .. rst-class:: sphx-glr-example-title .. _sphx_glr_tutorials_inner_products_1_basic.py: Basic Inner Products ==================== Inner products between two scalar or vector quantities represents the most basic class of inner products. For this class of inner products, we demonstrate: - How to construct the inner product matrix - How to use inner product matricies to approximate the inner product - How to construct the inverse of the inner product matrix. For scalar quantities :math:`\psi` and :math:`\phi`, the inner product is given by: .. math:: (\psi , \phi ) = \int_\Omega \psi \, \phi \, dv And for vector quantities :math:`\vec{u}` and :math:`\vec{v}`, the inner product is given by: .. math:: (\vec{u}, \vec{v}) = \int_\Omega \vec{u} \cdot \vec{v} \, dv In discretized form, we can approximate the aforementioned inner-products as: .. math:: (\psi , \phi) \approx \mathbf{\psi^T \, M \, \phi} and .. math:: (\vec{u}, \vec{v}) \approx \mathbf{u^T \, M \, v} where :math:`\mathbf{M}` in either equation represents an *inner-product matrix*. :math:`\mathbf{\psi}`, :math:`\mathbf{\phi}`, :math:`\mathbf{u}` and :math:`\mathbf{v}` are discrete variables that live on the mesh. It is important to note a few things about the inner-product matrix in this case: 1. It depends on the dimensions and discretization of the mesh 2. It depends on where the discrete variables live; e.g. edges, faces, nodes, centers For this simple class of inner products, the inner product matricies for discrete quantities living on various parts of the mesh have the form: .. math:: \textrm{Centers:} \; \mathbf{M_c} &= \textrm{diag} (\mathbf{v} ) \\ \textrm{Nodes:} \; \mathbf{M_n} &= \frac{1}{2^{2k}} \mathbf{P_n^T } \textrm{diag} (\mathbf{v} ) \mathbf{P_n} \\ \textrm{Faces:} \; \mathbf{M_f} &= \frac{1}{4} \mathbf{P_f^T } \textrm{diag} (\mathbf{I_k \otimes v} ) \mathbf{P_f} \\ \textrm{Edges:} \; \mathbf{M_e} &= \frac{1}{4^{k-1}} \mathbf{P_e^T } \textrm{diag} (\mathbf{I_k \otimes v}) \mathbf{P_e} where :math:`k = 1,2,3`, :math:`\mathbf{I_k}` is the identity matrix and :math:`\otimes` is the kronecker product. :math:`\mathbf{P}` are projection matricies that map quantities from one part of the cell (nodes, faces, edges) to cell centers. .. GENERATED FROM PYTHON SOURCE LINES 65-70 Import Packages --------------- Here we import the packages required for this tutorial .. GENERATED FROM PYTHON SOURCE LINES 71-82 .. code-block:: Python from discretize.utils import sdiag from discretize import TensorMesh import matplotlib.pyplot as plt import numpy as np rng = np.random.default_rng(8572) # sphinx_gallery_thumbnail_number = 2 .. GENERATED FROM PYTHON SOURCE LINES 83-104 Scalars ------- It is natural for scalar quantities to live at cell centers or nodes. Here we will define a scalar function (a Gaussian distribution in this case): .. math:: \phi(x) = \frac{1}{\sqrt{2 \pi \sigma^2}} \, e^{- \frac{(x- \mu )^2}{2 \sigma^2}} We will then evaluate the following inner product: .. math:: (\phi , \phi) = \int_\Omega \phi^2 \, dx = \frac{1}{2\sigma \sqrt{\pi}} according to the mid-point rule using inner-product matricies. Next we compare the numerical approximation of the inner product with the analytic solution. *Note that the method for evaluating inner products here can be extended to variables in 2D and 3D*. .. GENERATED FROM PYTHON SOURCE LINES 104-144 .. code-block:: Python # Define the Gaussian function def fcn_gaussian(x, mu, sig): return (1 / np.sqrt(2 * np.pi * sig**2)) * np.exp(-0.5 * (x - mu) ** 2 / sig**2) # Create a tensor mesh that is sufficiently large h = 0.1 * np.ones(100) mesh = TensorMesh([h], "C") # Define center point and standard deviation mu = 0 sig = 1.5 # Evaluate at cell centers and nodes phi_c = fcn_gaussian(mesh.gridCC, mu, sig) phi_n = fcn_gaussian(mesh.gridN, mu, sig) # Define inner-product matricies Mc = sdiag(mesh.cell_volumes) # cell-centered # Mn = mesh.getNodalInnerProduct() # on nodes (*functionality pending*) # Compute the inner product ipt = 1 / (2 * sig * np.sqrt(np.pi)) # true value of (f, f) ipc = np.dot(phi_c, (Mc * phi_c)) # ipn = np.dot(phi_n, (Mn*phi_n)) (*functionality pending*) fig = plt.figure(figsize=(5, 5)) ax = fig.add_subplot(111) ax.plot(mesh.gridCC, phi_c) ax.set_title("phi at cell centers") # Verify accuracy print("ACCURACY") print("Analytic solution: ", ipt) print("Cell-centered approx.:", ipc) # print('Nodal approx.: ', ipn) .. image-sg:: /tutorials/inner_products/images/sphx_glr_1_basic_001.png :alt: phi at cell centers :srcset: /tutorials/inner_products/images/sphx_glr_1_basic_001.png :class: sphx-glr-single-img .. rst-class:: sphx-glr-script-out .. code-block:: none ACCURACY Analytic solution: 0.18806319451591877 Cell-centered approx.: 0.18806274170655463 .. GENERATED FROM PYTHON SOURCE LINES 145-166 Vectors ------- To preserve the natural boundary conditions for each cell, it is standard practice to define fields on cell edges and fluxes on cell faces. Here we will define a 2D vector quantity: .. math:: \vec{v}(x,y) = \Bigg [ \frac{-y}{r} \hat{x} + \frac{x}{r} \hat{y} \Bigg ] \, e^{-\frac{x^2+y^2}{2\sigma^2}} We will then evaluate the following inner product: .. math:: (\vec{v}, \vec{v}) = \int_\Omega \vec{v} \cdot \vec{v} \, da = 2 \pi \sigma^2 using inner-product matricies. Next we compare the numerical evaluation of the inner products with the analytic solution. *Note that the method for evaluating inner products here can be extended to variables in 3D*. .. GENERATED FROM PYTHON SOURCE LINES 166-225 .. code-block:: Python # Define components of the function def fcn_x(xy, sig): return (-xy[:, 1] / np.sqrt(np.sum(xy**2, axis=1))) * np.exp( -0.5 * np.sum(xy**2, axis=1) / sig**2 ) def fcn_y(xy, sig): return (xy[:, 0] / np.sqrt(np.sum(xy**2, axis=1))) * np.exp( -0.5 * np.sum(xy**2, axis=1) / sig**2 ) # Create a tensor mesh that is sufficiently large h = 0.1 * np.ones(100) mesh = TensorMesh([h, h], "CC") # Define center point and standard deviation sig = 1.5 # Evaluate inner-product using edge-defined discrete variables vx = fcn_x(mesh.gridEx, sig) vy = fcn_y(mesh.gridEy, sig) v = np.r_[vx, vy] Me = mesh.get_edge_inner_product() # Edge inner product matrix ipe = np.dot(v, Me * v) # Evaluate inner-product using face-defined discrete variables vx = fcn_x(mesh.gridFx, sig) vy = fcn_y(mesh.gridFy, sig) v = np.r_[vx, vy] Mf = mesh.get_face_inner_product() # Edge inner product matrix ipf = np.dot(v, Mf * v) # The analytic solution of (v, v) ipt = np.pi * sig**2 # Plot the vector function fig = plt.figure(figsize=(5, 5)) ax = fig.add_subplot(111) mesh.plot_image( v, ax=ax, v_type="F", view="vec", stream_opts={"color": "w", "density": 1.0} ) ax.set_title("v at cell faces") fig.show() # Verify accuracy print("ACCURACY") print("Analytic solution: ", ipt) print("Edge variable approx.:", ipe) print("Face variable approx.:", ipf) .. image-sg:: /tutorials/inner_products/images/sphx_glr_1_basic_002.png :alt: v at cell faces :srcset: /tutorials/inner_products/images/sphx_glr_1_basic_002.png :class: sphx-glr-single-img .. rst-class:: sphx-glr-script-out .. code-block:: none ACCURACY Analytic solution: 7.0685834705770345 Edge variable approx.: 7.057606391882359 Face variable approx.: 7.0794915919325305 .. GENERATED FROM PYTHON SOURCE LINES 226-239 Inverse of Inner Product Matricies ---------------------------------- The final discretized system using the finite volume method may contain the inverse of an inner-product matrix. Here we show how the inverse of the inner product matrix can be explicitly constructed. We validate its accuracy for cell-centers, nodes, edges and faces by computing the folling L2-norm for each: .. math:: \| \mathbf{v - M^{-1} M v} \|^2 .. GENERATED FROM PYTHON SOURCE LINES 239-279 .. code-block:: Python # Create a tensor mesh h = 0.1 * np.ones(100) mesh = TensorMesh([h, h], "CC") # Cell centered for scalar quantities Mc = sdiag(mesh.cell_volumes) Mc_inv = sdiag(1 / mesh.cell_volumes) # Nodes for scalar quantities (*functionality pending*) # Mn = mesh.getNodalInnerProduct() # Mn_inv = mesh.getNodalInnerProduct(invert_matrix=True) # Edges for vector quantities Me = mesh.get_edge_inner_product() Me_inv = mesh.get_edge_inner_product(invert_matrix=True) # Faces for vector quantities Mf = mesh.get_face_inner_product() Mf_inv = mesh.get_face_inner_product(invert_matrix=True) # Generate some random vectors phi_c = rng.random(mesh.nC) # phi_n = rng.random(mesh.nN) vec_e = rng.random(mesh.nE) vec_f = rng.random(mesh.nF) # Generate some random vectors norm_c = np.linalg.norm(phi_c - Mc_inv.dot(Mc.dot(phi_c))) # norm_n = np.linalg.norm(phi_n - Mn_inv*Mn*phi_n) norm_e = np.linalg.norm(vec_e - Me_inv * Me * vec_e) norm_f = np.linalg.norm(vec_f - Mf_inv * Mf * vec_f) # Verify accuracy print("ACCURACY") print("Norm for centers:", norm_c) # print('Norm for nodes: ', norm_n) print("Norm for edges: ", norm_e) print("Norm for faces: ", norm_f) .. rst-class:: sphx-glr-script-out .. code-block:: none ACCURACY Norm for centers: 4.8433868564087776e-15 Norm for edges: 0.0 Norm for faces: 0.0 .. rst-class:: sphx-glr-timing **Total running time of the script:** (0 minutes 0.614 seconds) .. _sphx_glr_download_tutorials_inner_products_1_basic.py: .. only:: html .. container:: sphx-glr-footer sphx-glr-footer-example .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: 1_basic.ipynb <1_basic.ipynb>` .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: 1_basic.py <1_basic.py>` .. container:: sphx-glr-download sphx-glr-download-zip :download:`Download zipped: 1_basic.zip <1_basic.zip>` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_