.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "examples/plot_pyvista_laguna.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note :ref:`Go to the end ` to download the full example code. .. rst-class:: sphx-glr-example-title .. _sphx_glr_examples_plot_pyvista_laguna.py: .. _pyvista_demo_ref: 3D Visualization with PyVista ============================= The example demonstrates the how to use the VTK interface via the `pyvista library `__ . To run this example, you will need to `install pyvista `__ . - contributed by `@banesullivan `_ Using the inversion result from the example notebook `plot_laguna_del_maule_inversion.ipynb `_ .. GENERATED FROM PYTHON SOURCE LINES 17-29 .. code-block:: Python # sphinx_gallery_thumbnail_number = 2 import discretize import pyvista as pv import numpy as np import pooch # Set a documentation friendly plotting theme pv.set_plot_theme("document") print("PyVista Version: {}".format(pv.__version__)) .. rst-class:: sphx-glr-script-out .. code-block:: none PyVista Version: 0.44.1 .. GENERATED FROM PYTHON SOURCE LINES 30-36 Download and load data ---------------------- In the following we load the :code:`mesh` and :code:`Lpout` that you would get from running the laguna-del-maule inversion notebook as well as some of the raw data for the topography surface and gravity observations. .. GENERATED FROM PYTHON SOURCE LINES 36-61 .. code-block:: Python # Download Topography and Observed gravity data data_url = "https://storage.googleapis.com/simpeg/Chile_GRAV_4_Miller/Chile_GRAV_4_Miller.tar.gz" downloaded_items = pooch.retrieve( data_url, known_hash="28022bf8802eeb4892cac6c3efd1eb4275c84003a6723c047fe5e1738a66ea04", processor=pooch.Untar(), ) data_path = next(filter(lambda f: f.endswith("LdM_grav_obs.grv"), downloaded_items)) topo_path = next(filter(lambda f: f.endswith("LdM_topo.topo"), downloaded_items)) model_url = "https://storage.googleapis.com/simpeg/laguna_del_maule_slicer.tar.gz" downloaded_items = pooch.retrieve( model_url, known_hash="107293bfdeb77b314f4cb451a24c2c93a55aae40da28f43cf3c075d71acfb957", processor=pooch.Untar(), ) mesh_path = next(filter(lambda f: f.endswith("mesh.json"), downloaded_items)) model_path = next(filter(lambda f: f.endswith("Lpout.npy"), downloaded_items)) # # Load the mesh/data mesh = discretize.load_mesh(mesh_path) models = {"Lpout": np.load(model_path)} .. rst-class:: sphx-glr-script-out .. code-block:: none Downloading data from 'https://storage.googleapis.com/simpeg/Chile_GRAV_4_Miller/Chile_GRAV_4_Miller.tar.gz' to file '/home/vsts/.cache/pooch/1aa04a54c5738d4bb795040e61b8adaa-Chile_GRAV_4_Miller.tar.gz'. Untarring contents of '/home/vsts/.cache/pooch/1aa04a54c5738d4bb795040e61b8adaa-Chile_GRAV_4_Miller.tar.gz' to '/home/vsts/.cache/pooch/1aa04a54c5738d4bb795040e61b8adaa-Chile_GRAV_4_Miller.tar.gz.untar' Downloading data from 'https://storage.googleapis.com/simpeg/laguna_del_maule_slicer.tar.gz' to file '/home/vsts/.cache/pooch/5f2aebc57c6e4821887113b9d5c65f53-laguna_del_maule_slicer.tar.gz'. Untarring contents of '/home/vsts/.cache/pooch/5f2aebc57c6e4821887113b9d5c65f53-laguna_del_maule_slicer.tar.gz' to '/home/vsts/.cache/pooch/5f2aebc57c6e4821887113b9d5c65f53-laguna_del_maule_slicer.tar.gz.untar' .. GENERATED FROM PYTHON SOURCE LINES 62-67 Create PyVista data objects --------------------------- Here we start making PyVista data objects of all the spatially referenced data. .. GENERATED FROM PYTHON SOURCE LINES 67-72 .. code-block:: Python # Get the PyVista dataset of the inverted model dataset = mesh.to_vtk(models) dataset.set_active_scalars("Lpout") .. rst-class:: sphx-glr-script-out .. code-block:: none (, pyvista_ndarray([0.02552159, 0.02554211, 0.02568049, ..., nan, nan, nan])) .. GENERATED FROM PYTHON SOURCE LINES 73-79 .. code-block:: Python # Load topography points from text file as XYZ numpy array topo_pts = np.loadtxt(topo_path, skiprows=1) # Create the topography points and apply an elevation filter topo = pv.PolyData(topo_pts).delaunay_2d().elevation() .. GENERATED FROM PYTHON SOURCE LINES 80-91 .. code-block:: Python # Load the gravity data from text file as XYZ+attributes numpy array grav_data = np.loadtxt(data_path, skiprows=1) print("gravity file shape: ", grav_data.shape) # Use the points to create PolyData grav = pv.PolyData(grav_data[:, 0:3]) # Add the data arrays grav.point_data["comp-1"] = grav_data[:, 3] grav.point_data["comp-2"] = grav_data[:, 4] grav.set_active_scalars("comp-1") .. rst-class:: sphx-glr-script-out .. code-block:: none gravity file shape: (191, 5) (, pyvista_ndarray([-1.15534e+01, -1.44465e+01, -5.33190e+00, -1.63014e+01, -1.30721e+01, -1.39600e-01, 5.68720e+00, -7.10900e-01, 4.71980e+00, 1.23900e+00, 3.68730e+00, -5.31380e+00, 4.14140e+00, -3.58090e+00, 3.94350e+00, 4.07840e+00, -1.14430e+00, 3.99480e+00, 5.58800e-01, -1.40378e+01, -1.43858e+01, -1.63174e+01, -1.16554e+01, -2.87140e+00, -9.56420e+00, -2.25410e+00, -4.58700e-01, -5.24410e+00, 4.90410e+00, 5.52340e+00, 3.87690e+00, 4.02540e+00, 3.81050e+00, 2.83610e+00, 2.56460e+00, -1.63680e+00, -4.29360e+00, -5.44530e+00, -3.38050e+00, -3.28940e+00, -1.83590e+00, -8.48700e-01, -1.09720e+00, -1.92030e+00, -8.58400e-01, 9.17100e-01, 2.08710e+00, 3.63410e+00, 3.87850e+00, 4.20830e+00, 3.76590e+00, 4.37010e+00, 4.97830e+00, 5.47840e+00, 4.20080e+00, 4.53510e+00, 3.87420e+00, 3.80150e+00, 3.70450e+00, 4.18960e+00, 4.14460e+00, 3.69240e+00, 2.99500e+00, 2.57130e+00, 2.82980e+00, 4.18930e+00, 2.37200e+00, 2.24040e+00, -1.57320e+00, -2.95570e+00, -6.11860e+00, -8.62850e+00, 4.23130e+00, 3.87100e+00, 4.25970e+00, 3.98770e+00, 3.07480e+00, 2.33480e+00, -1.16109e+01, -9.84730e+00, -5.55460e+00, -9.33400e-01, -7.04800e-01, -2.49900e-01, -1.01720e+00, 1.10040e+00, 7.12600e-01, 5.52700e-02, -4.48000e-02, -6.12000e-01, -2.54110e+00, -5.06770e+00, -1.33736e+01, 4.70080e+00, 2.96350e+00, 1.79560e+00, 1.23870e+00, 4.76700e-01, 3.94200e-01, 4.63400e-01, 1.67910e+00, -2.09600e-01, -1.03530e+00, -2.36800e-01, -3.75900e-01, 1.89900e+00, 3.70720e+00, 5.07700e+00, 6.06070e+00, 4.37360e+00, 4.37840e+00, 2.24920e+00, 2.81660e+00, 5.34190e+00, 5.86920e+00, 4.18790e+00, 3.95290e+00, 8.15200e-01, -1.27156e+01, -1.43970e+01, -1.74116e+01, -1.86309e+01, -1.81361e+01, 4.94820e+00, 3.93680e+00, 1.32440e+00, -3.41200e-01, 1.65010e+00, -1.22760e+00, -1.81560e+00, -3.28520e+00, -3.09490e+00, -4.19520e+00, -3.48290e+00, -3.78440e+00, -3.26540e+00, -3.08930e+00, -3.90630e+00, -4.93810e+00, -7.21930e+00, -5.10450e+00, -9.73700e-01, -9.08700e-01, 2.24600e-01, -8.98800e-01, -4.72800e-01, -1.19300e-01, -1.83000e-02, -1.00700e+00, -8.17600e-01, -1.45390e+00, -1.59900e-01, -8.91000e-02, -1.34800e+00, 5.03900e-01, -6.82900e-01, -1.38463e+01, -1.56983e+01, -1.27892e+01, -1.24353e+01, 5.16970e+00, 7.08610e+00, 8.82880e+00, 9.56390e+00, 9.91700e+00, 9.10020e+00, 7.98270e+00, 7.49300e+00, -3.28730e+00, 9.36000e-02, 3.46120e+00, 2.97870e+00, 1.67290e+00, 2.43910e+00, -2.80870e+00, -2.44900e+00, -9.97900e-01, -1.97800e-01, -1.08000e-01, -2.63600e-01, 8.78000e-02, 4.40860e+00, -6.57400e-01, 8.15900e-01, 7.45070e+00, 7.13330e+00, 1.13950e+00, -2.55000e-02, 1.07700e+00, -2.95130e+00, 1.58060e+00])) .. GENERATED FROM PYTHON SOURCE LINES 92-93 Plot the topographic surface and the gravity data .. GENERATED FROM PYTHON SOURCE LINES 93-107 .. code-block:: Python p = pv.Plotter() p.add_mesh(topo, color="grey") p.add_mesh( grav, point_size=15, render_points_as_spheres=True, scalar_bar_args={"title": "Observed Gravtiy Data"}, ) # Use a non-phot-realistic shading technique to show topographic relief p.enable_eye_dome_lighting() p.show(window_size=[1024, 768]) .. image-sg:: /examples/images/sphx_glr_plot_pyvista_laguna_001.png :alt: plot pyvista laguna :srcset: /examples/images/sphx_glr_plot_pyvista_laguna_001.png :class: sphx-glr-single-img .. GENERATED FROM PYTHON SOURCE LINES 108-112 Visualize Using PyVista ----------------------- Here we visualize all the data in 3D! .. GENERATED FROM PYTHON SOURCE LINES 112-155 .. code-block:: Python # Create display parameters for inverted model dparams = dict( show_edges=False, cmap="bwr", clim=[-0.6, 0.6], ) # Apply a threshold filter to remove topography # no arguments will remove the NaN values dataset_t = dataset.threshold() # Extract volumetric threshold threshed = dataset_t.threshold(-0.2, invert=True) # Create the rendering scene p = pv.Plotter() # add a grid axes p.show_grid() # Add spatially referenced data to the scene p.add_mesh(dataset_t.slice("x"), **dparams) p.add_mesh(dataset_t.slice("y"), **dparams) p.add_mesh(threshed, **dparams) p.add_mesh( topo, opacity=0.75, color="grey", # cmap='gist_earth', clim=[1.7e+03, 3.104e+03], ) p.add_mesh(grav, cmap="viridis", point_size=15, render_points_as_spheres=True) # Here is a nice camera position we manually found: cpos = [ (395020.7332989303, 6039949.0452080015, 20387.583125699253), (364528.3152860675, 6008839.363092581, -3776.318305935185), (-0.3423732500124074, -0.34364514928896667, 0.8744647328772646), ] p.camera_position = cpos # Render the scene! p.show(window_size=[1024, 768]) .. image-sg:: /examples/images/sphx_glr_plot_pyvista_laguna_002.png :alt: plot pyvista laguna :srcset: /examples/images/sphx_glr_plot_pyvista_laguna_002.png :class: sphx-glr-single-img .. rst-class:: sphx-glr-timing **Total running time of the script:** (0 minutes 21.435 seconds) .. _sphx_glr_download_examples_plot_pyvista_laguna.py: .. only:: html .. container:: sphx-glr-footer sphx-glr-footer-example .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_pyvista_laguna.ipynb ` .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot_pyvista_laguna.py ` .. container:: sphx-glr-download sphx-glr-download-zip :download:`Download zipped: plot_pyvista_laguna.zip ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_