discretize.operators.DiffOperators.edges#

property DiffOperators.edges#

Gridded edge locations.

This property returns a numpy array of shape (n_edges, dim) containing gridded locations for all edges in the mesh.

For structured meshes, the first row corresponds to the bottom-front-leftmost x-edge. The output array returns the x-edges, then the y-edges, then the z-edges; i.e. mesh.edges is equivalent to np.r_[mesh.edges_x, mesh.edges_y, mesh.edges_z] . For each edge type, the locations are ordered along the x, then y, then z directions.

Returns:
(n_edges, dim) numpy.ndarray of float

Gridded edge locations

Examples

Here, we provide an example of a minimally staggered curvilinear mesh. In this case, the x and y-edges have normal vectors that are primarily along the x and y-directions, respectively.

>>> from discretize import CurvilinearMesh
>>> from discretize.utils import example_curvilinear_grid, mkvc
>>> from matplotlib import pyplot as plt
>>> x, y = example_curvilinear_grid([10, 10], "rotate")
>>> mesh1 = CurvilinearMesh([x, y])
>>> edges = mesh1.edges
>>> x_edges = edges[:mesh1.n_edges_x]
>>> y_edges = edges[mesh1.n_edges_x:]
>>> fig1 = plt.figure(figsize=(5, 5))
>>> ax1 = fig1.add_subplot(111)
>>> mesh1.plot_grid(ax=ax1)
>>> ax1.scatter(x_edges[:, 0], x_edges[:, 1], 30, 'r')
>>> ax1.scatter(y_edges[:, 0], y_edges[:, 1], 30, 'g')
>>> ax1.legend(['Mesh', 'X-edges', 'Y-edges'], fontsize=16)
>>> plt.plot()

Here, we provide an example of a highly irregular curvilinear mesh. In this case, the y-edges are not defined by normal vectors along a particular direction.

>>> x, y = example_curvilinear_grid([10, 10], "sphere")
>>> mesh2 = CurvilinearMesh([x, y])
>>> edges = mesh2.edges
>>> x_edges = edges[:mesh2.n_edges_x]
>>> y_edges = edges[mesh2.n_edges_x:]
>>> fig2 = plt.figure(figsize=(5, 5))
>>> ax2 = fig2.add_subplot(111)
>>> mesh2.plot_grid(ax=ax2)
>>> ax2.scatter(x_edges[:, 0], x_edges[:, 1], 30, 'r')
>>> ax2.scatter(y_edges[:, 0], y_edges[:, 1], 30, 'g')
>>> ax2.legend(['Mesh', 'X-edges', 'Y-edges'], fontsize=16)
>>> plt.show()

(Source code)

../../_images/discretize-operators-DiffOperators-edges-1_00.png

(png, pdf)#

../../_images/discretize-operators-DiffOperators-edges-1_01.png

(png, pdf)#