:orphan:
Solving PDEs
============
Here we show how the *discretize* package can be used to solve partial differential
equations (PDE) numerically by employing the finite volume method. To solve a PDE
numerically we must complete the following steps:
1. Formulate the problem; e.g. the PDE and its boundary conditions
2. Apply the weak formulation by taking the inner product of each PDE with a test function
3. Formulate a discrete set of equations for the inner products according to the finite volume method
4. Use the discrete set of equations to solve for the unknown variable numerically
.. raw:: html
.. thumbnail-parent-div-open
.. raw:: html
.. only:: html
.. image:: /tutorials/pde/images/thumb/sphx_glr_1_poisson_thumb.png
:alt:
:ref:`sphx_glr_tutorials_pde_1_poisson.py`
.. raw:: html
Gauss' Law of Electrostatics
.. raw:: html
.. only:: html
.. image:: /tutorials/pde/images/thumb/sphx_glr_2_advection_diffusion_thumb.png
:alt:
:ref:`sphx_glr_tutorials_pde_2_advection_diffusion.py`
.. raw:: html
Advection-Diffusion Equation
.. raw:: html
.. only:: html
.. image:: /tutorials/pde/images/thumb/sphx_glr_3_nodal_dirichlet_poisson_thumb.png
:alt:
:ref:`sphx_glr_tutorials_pde_3_nodal_dirichlet_poisson.py`
.. raw:: html
Nodal Dirichlet Poisson solution
.. thumbnail-parent-div-close
.. raw:: html
.. toctree::
:hidden:
/tutorials/pde/1_poisson
/tutorials/pde/2_advection_diffusion
/tutorials/pde/3_nodal_dirichlet_poisson
.. only:: html
.. container:: sphx-glr-footer sphx-glr-footer-gallery
.. container:: sphx-glr-download sphx-glr-download-python
:download:`Download all examples in Python source code: pde_python.zip `
.. container:: sphx-glr-download sphx-glr-download-jupyter
:download:`Download all examples in Jupyter notebooks: pde_jupyter.zip `
.. only:: html
.. rst-class:: sphx-glr-signature
`Gallery generated by Sphinx-Gallery