:orphan: Solving PDEs ============ Here we show how the *discretize* package can be used to solve partial differential equations (PDE) numerically by employing the finite volume method. To solve a PDE numerically we must complete the following steps: 1. Formulate the problem; e.g. the PDE and its boundary conditions 2. Apply the weak formulation by taking the inner product of each PDE with a test function 3. Formulate a discrete set of equations for the inner products according to the finite volume method 4. Use the discrete set of equations to solve for the unknown variable numerically .. raw:: html
.. thumbnail-parent-div-open .. raw:: html
.. only:: html .. image:: /tutorials/pde/images/thumb/sphx_glr_1_poisson_thumb.png :alt: :ref:`sphx_glr_tutorials_pde_1_poisson.py` .. raw:: html
Gauss' Law of Electrostatics
.. raw:: html
.. only:: html .. image:: /tutorials/pde/images/thumb/sphx_glr_2_advection_diffusion_thumb.png :alt: :ref:`sphx_glr_tutorials_pde_2_advection_diffusion.py` .. raw:: html
Advection-Diffusion Equation
.. raw:: html
.. only:: html .. image:: /tutorials/pde/images/thumb/sphx_glr_3_nodal_dirichlet_poisson_thumb.png :alt: :ref:`sphx_glr_tutorials_pde_3_nodal_dirichlet_poisson.py` .. raw:: html
Nodal Dirichlet Poisson solution
.. thumbnail-parent-div-close .. raw:: html
.. toctree:: :hidden: /tutorials/pde/1_poisson /tutorials/pde/2_advection_diffusion /tutorials/pde/3_nodal_dirichlet_poisson .. only:: html .. container:: sphx-glr-footer sphx-glr-footer-gallery .. container:: sphx-glr-download sphx-glr-download-python :download:`Download all examples in Python source code: pde_python.zip ` .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download all examples in Jupyter notebooks: pde_jupyter.zip ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_