discretize.TensorMesh

class discretize.TensorMesh(h=None, x0=None, **kwargs)[source]

Bases: discretize.base.base_tensor_mesh.BaseTensorMesh, discretize.base.base_mesh.BaseRectangularMesh, discretize.View.TensorView, discretize.DiffOperators.DiffOperators, discretize.InnerProducts.InnerProducts, discretize.MeshIO.TensorMeshIO

TensorMesh is a mesh class that deals with tensor product meshes.

Any Mesh that has a constant width along the entire axis such that it can defined by a single width vector, called ‘h’.

import discretize

hx = np.array([1, 1, 1])
hy = np.array([1, 2])
hz = np.array([1, 1, 1, 1])

mesh = discretize.TensorMesh([hx, hy, hz])
mesh.plotGrid()

(Source code, png, hires.png, pdf)

../../_images/discretize-TensorMesh-1.png

Example of a padded tensor mesh using discretize.utils.meshTensor():

import discretize
mesh = discretize.TensorMesh([
    [(10, 10, -1.3), (10, 40), (10, 10, 1.3)],
    [(10, 10, -1.3), (10, 20)]
])
mesh.plotGrid()

(Source code, png, hires.png, pdf)

../../_images/discretize-TensorMesh-2.png

For a quick tensor mesh on a (10x12x15) unit cube

import discretize
mesh = discretize.TensorMesh([10, 12, 15])

Required Properties:

  • axis_u (Vector3): Vector orientation of u-direction. For more details see the docs for the rotation_matrix property., a 3D Vector of <class ‘float’> with shape (3), Default: X
  • axis_v (Vector3): Vector orientation of v-direction. For more details see the docs for the rotation_matrix property., a 3D Vector of <class ‘float’> with shape (3), Default: Y
  • axis_w (Vector3): Vector orientation of w-direction. For more details see the docs for the rotation_matrix property., a 3D Vector of <class ‘float’> with shape (3), Default: Z
  • h (a list of Array): h is a list containing the cell widths of the tensor mesh in each dimension., a list (each item is a list or numpy array of <class ‘float’> with shape (*)) with length between 0 and 3
  • reference_system (String): The type of coordinate reference frame. Can take on the values cartesian, cylindrical, or spherical. Abbreviations of these are allowed., a unicode string, Default: cartesian
  • x0 (Array): origin of the mesh (dim, ), a list or numpy array of <class ‘float’>, <class ‘int’> with shape (*)
Attributes:
area

Construct face areas of the 3D model as 1d array.

areaFx

Area of the x-faces

areaFy

Area of the y-faces

areaFz

Area of the z-faces

aveCC2F

Construct the averaging operator on cell centers to faces.

aveCCV2F

Construct the averaging operator on cell centers to faces as a vector.

aveE2CC

Construct the averaging operator on cell edges to cell centers.

aveE2CCV

Construct the averaging operator on cell edges to cell centers.

aveEx2CC

Construct the averaging operator on cell edges in the x direction to cell centers.

aveEy2CC

Construct the averaging operator on cell edges in the y direction to cell centers.

aveEz2CC

Construct the averaging operator on cell edges in the z direction to cell centers.

aveF2CC

Construct the averaging operator on cell faces to cell centers.

aveF2CCV

Construct the averaging operator on cell faces to cell centers.

aveFx2CC

Construct the averaging operator on cell faces in the x direction to cell centers.

aveFy2CC

Construct the averaging operator on cell faces in the y direction to cell centers.

aveFz2CC

Construct the averaging operator on cell faces in the z direction to cell centers.

aveN2CC

Construct the averaging operator on cell nodes to cell centers.

aveN2E

Construct the averaging operator on cell nodes to cell edges, keeping each dimension separate.

aveN2F

Construct the averaging operator on cell nodes to cell faces, keeping each dimension separate.

axis_u

axis_u (Vector3): Vector orientation of u-direction. For more details see the docs for the rotation_matrix property., a 3D Vector of <class ‘float’> with shape (3), Default: X

axis_v

axis_v (Vector3): Vector orientation of v-direction. For more details see the docs for the rotation_matrix property., a 3D Vector of <class ‘float’> with shape (3), Default: Y

axis_w

axis_w (Vector3): Vector orientation of w-direction. For more details see the docs for the rotation_matrix property., a 3D Vector of <class ‘float’> with shape (3), Default: Z

cellBoundaryInd

Find indices of boundary faces in each direction

cellGrad

The cell centered Gradient, takes you to cell faces.

cellGradBC

The cell centered Gradient boundary condition matrix

cellGradx

Cell centered Gradient in the x dimension.

cellGrady
cellGradz

Cell centered Gradient in the x dimension.

dim

The dimension of the mesh (1, 2, or 3).

edge

Construct edge legnths of the 3D model as 1d array.

edgeCurl

Construct the 3D curl operator.

edgeEx

x-edge lengths

edgeEy

y-edge lengths

edgeEz

z-edge lengths

faceBoundaryInd

Find indices of boundary faces in each direction

faceDiv

Construct divergence operator (face-stg to cell-centres).

faceDivx

Construct divergence operator in the x component (face-stg to cell-centres).

faceDivy
faceDivz

Construct divergence operator in the z component (face-stg to cell-centers).

gridCC

Cell-centered grid.

gridEx

Edge staggered grid in the x direction.

gridEy

Edge staggered grid in the y direction.

gridEz

Edge staggered grid in the z direction.

gridFx

Face staggered grid in the x direction.

gridFy

Face staggered grid in the y direction.

gridFz

Face staggered grid in the z direction.

gridN

Nodal grid.

h

h (a list of Array): h is a list containing the cell widths of the tensor mesh in each dimension., a list (each item is a list or numpy array of <class ‘float’> with shape (*)) with length between 0 and 3

h_gridded

Returns an (nC, dim) numpy array with the widths of all cells in order

hx

Width of cells in the x direction

hy

Width of cells in the y direction

hz

Width of cells in the z direction

nC

Total number of cells

nCx

Number of cells in the x direction

nCy

Number of cells in the y direction

nCz

Number of cells in the z direction

nE

Total number of edges.

nEx

Number of x-edges

nEy

Number of y-edges

nEz

Number of z-edges

nF

Total number of faces.

nFx

Number of x-faces

nFy

Number of y-faces

nFz

Number of z-faces

nN

Total number of nodes

nNx

Number of nodes in the x-direction

nNy

Number of nodes in the y-direction

nNz

Number of nodes in the z-direction

nodalGrad

Construct gradient operator (nodes to edges).

nodalLaplacian

Construct laplacian operator (nodes to edges).

normals

Face Normals

reference_is_rotated

True if the axes are rotated from the traditional <X,Y,Z> system

reference_system

reference_system (String): The type of coordinate reference frame. Can take on the values cartesian, cylindrical, or spherical. Abbreviations of these are allowed., a unicode string, Default: cartesian

rotation_matrix

Builds a rotation matrix to transform coordinates from their coordinate system into a conventional cartesian system.

tangents

Edge Tangents

vectorCCx

Cell-centered grid vector (1D) in the x direction.

vectorCCy

Cell-centered grid vector (1D) in the y direction.

vectorCCz

Cell-centered grid vector (1D) in the z direction.

vectorNx

Nodal grid vector (1D) in the x direction.

vectorNy

Nodal grid vector (1D) in the y direction.

vectorNz

Nodal grid vector (1D) in the z direction.

vnC

Total number of cells in each direction

vnE

Total number of edges in each direction

vnEx

Number of x-edges in each direction

vnEy

Number of y-edges in each direction

vnEz

Number of z-edges in each direction

vnF

Total number of faces in each direction

vnFx

Number of x-faces in each direction

vnFy

Number of y-faces in each direction

vnFz

Number of z-faces in each direction

vnN

Total number of nodes in each direction

vol

Construct cell volumes of the 3D model as 1d array.

x0

x0 (Array): origin of the mesh (dim, ), a list or numpy array of <class ‘float’>, <class ‘int’> with shape (*)

Methods

copy Generic (shallow and deep) copying operations.
deserialize
equal
from_omf
getBCProjWF
getBCProjWF_simple
getEdgeInnerProduct
getEdgeInnerProductDeriv
getFaceInnerProduct
getFaceInnerProductDeriv
getInterpolationMat
getTensor
isInside
plotGrid
plotImage
plotSlice
plot_3d_slicer
projectEdgeVector
projectFaceVector
r
readModelUBC
readUBC
readVTK
read_vtk
save
serialize
setCellGradBC
toVTK
to_omf
to_vtk
validate
vtk_to_tensor_mesh
writeModelUBC
writeUBC
writeVTK
write_vtk

Attributes

TensorMesh.area

Construct face areas of the 3D model as 1d array.

TensorMesh.areaFx

Area of the x-faces

TensorMesh.areaFy

Area of the y-faces

TensorMesh.areaFz

Area of the z-faces

TensorMesh.aveCC2F

Construct the averaging operator on cell centers to faces.

TensorMesh.aveCCV2F

Construct the averaging operator on cell centers to faces as a vector.

TensorMesh.aveE2CC

Construct the averaging operator on cell edges to cell centers.

TensorMesh.aveE2CCV

Construct the averaging operator on cell edges to cell centers.

TensorMesh.aveEx2CC

Construct the averaging operator on cell edges in the x direction to cell centers.

TensorMesh.aveEy2CC

Construct the averaging operator on cell edges in the y direction to cell centers.

TensorMesh.aveEz2CC

Construct the averaging operator on cell edges in the z direction to cell centers.

TensorMesh.aveF2CC

Construct the averaging operator on cell faces to cell centers.

TensorMesh.aveF2CCV

Construct the averaging operator on cell faces to cell centers.

TensorMesh.aveFx2CC

Construct the averaging operator on cell faces in the x direction to cell centers.

TensorMesh.aveFy2CC

Construct the averaging operator on cell faces in the y direction to cell centers.

TensorMesh.aveFz2CC

Construct the averaging operator on cell faces in the z direction to cell centers.

TensorMesh.aveN2CC

Construct the averaging operator on cell nodes to cell centers.

TensorMesh.aveN2E

Construct the averaging operator on cell nodes to cell edges, keeping each dimension separate.

TensorMesh.aveN2F

Construct the averaging operator on cell nodes to cell faces, keeping each dimension separate.

TensorMesh.axis_u

X

Type:axis_u (Vector3)
Type:Vector orientation of u-direction. For more details see the docs for the rotation_matrix property., a 3D Vector of <class ‘float’> with shape (3), Default
TensorMesh.axis_v

Y

Type:axis_v (Vector3)
Type:Vector orientation of v-direction. For more details see the docs for the rotation_matrix property., a 3D Vector of <class ‘float’> with shape (3), Default
TensorMesh.axis_w

Z

Type:axis_w (Vector3)
Type:Vector orientation of w-direction. For more details see the docs for the rotation_matrix property., a 3D Vector of <class ‘float’> with shape (3), Default
TensorMesh.cellBoundaryInd

Find indices of boundary faces in each direction

TensorMesh.cellGrad

The cell centered Gradient, takes you to cell faces.

TensorMesh.cellGradBC

The cell centered Gradient boundary condition matrix

TensorMesh.cellGradx

Cell centered Gradient in the x dimension. Has neumann boundary conditions.

TensorMesh.cellGrady
TensorMesh.cellGradz

Cell centered Gradient in the x dimension. Has neumann boundary conditions.

TensorMesh.dim

The dimension of the mesh (1, 2, or 3).

Returns:dimension of the mesh
Return type:int
TensorMesh.edge

Construct edge legnths of the 3D model as 1d array.

TensorMesh.edgeCurl

Construct the 3D curl operator.

TensorMesh.edgeEx

x-edge lengths

TensorMesh.edgeEy

y-edge lengths

TensorMesh.edgeEz

z-edge lengths

TensorMesh.faceBoundaryInd

Find indices of boundary faces in each direction

TensorMesh.faceDiv

Construct divergence operator (face-stg to cell-centres).

TensorMesh.faceDivx

Construct divergence operator in the x component (face-stg to cell-centres).

TensorMesh.faceDivy
TensorMesh.faceDivz

Construct divergence operator in the z component (face-stg to cell-centers).

TensorMesh.gridCC

Cell-centered grid.

TensorMesh.gridEx

Edge staggered grid in the x direction.

TensorMesh.gridEy

Edge staggered grid in the y direction.

TensorMesh.gridEz

Edge staggered grid in the z direction.

TensorMesh.gridFx

Face staggered grid in the x direction.

TensorMesh.gridFy

Face staggered grid in the y direction.

TensorMesh.gridFz

Face staggered grid in the z direction.

TensorMesh.gridN

Nodal grid.

TensorMesh.h

h is a list containing the cell widths of the tensor mesh in each dimension., a list (each item is a list or numpy array of <class ‘float’> with shape (*)) with length between 0 and 3

Type:h (a list of Array)
TensorMesh.h_gridded

Returns an (nC, dim) numpy array with the widths of all cells in order

TensorMesh.hx

Width of cells in the x direction

TensorMesh.hy

Width of cells in the y direction

TensorMesh.hz

Width of cells in the z direction

TensorMesh.nC

Total number of cells

Return type:int
Returns:nC
TensorMesh.nCx

Number of cells in the x direction

Return type:int
Returns:nCx
TensorMesh.nCy

Number of cells in the y direction

Return type:int
Returns:nCy or None if dim < 2
TensorMesh.nCz

Number of cells in the z direction

Return type:int
Returns:nCz or None if dim < 3
TensorMesh.nE

Total number of edges.

Returns:nE
Return type:int = sum([nEx, nEy, nEz])
TensorMesh.nEx

Number of x-edges

Return type:int
Returns:nEx
TensorMesh.nEy

Number of y-edges

Return type:int
Returns:nEy
TensorMesh.nEz

Number of z-edges

Return type:int
Returns:nEz
TensorMesh.nF

Total number of faces.

Return type:int
Returns:sum([nFx, nFy, nFz])
TensorMesh.nFx

Number of x-faces

Return type:int
Returns:nFx
TensorMesh.nFy

Number of y-faces

Return type:int
Returns:nFy
TensorMesh.nFz

Number of z-faces

Return type:int
Returns:nFz
TensorMesh.nN

Total number of nodes

Return type:int
Returns:nN
TensorMesh.nNx

Number of nodes in the x-direction

Return type:int
Returns:nNx
TensorMesh.nNy

Number of nodes in the y-direction

Return type:int
Returns:nNy or None if dim < 2
TensorMesh.nNz

Number of nodes in the z-direction

Return type:int
Returns:nNz or None if dim < 3
TensorMesh.nodalGrad

Construct gradient operator (nodes to edges).

TensorMesh.nodalLaplacian

Construct laplacian operator (nodes to edges).

TensorMesh.normals

Face Normals

Return type:numpy.ndarray
Returns:normals, (sum(nF), dim)
TensorMesh.reference_is_rotated

True if the axes are rotated from the traditional <X,Y,Z> system with vectors of \((1,0,0)\), \((0,1,0)\), and \((0,0,1)\)

TensorMesh.reference_system

cartesian

Type:reference_system (String)
Type:The type of coordinate reference frame. Can take on the values cartesian, cylindrical, or spherical. Abbreviations of these are allowed., a unicode string, Default
TensorMesh.rotation_matrix

Builds a rotation matrix to transform coordinates from their coordinate system into a conventional cartesian system. This is built off of the three axis_u, axis_v, and axis_w properties; these mapping coordinates use the letters U, V, and W (the three letters preceding X, Y, and Z in the alphabet) to define the projection of the X, Y, and Z durections. These UVW vectors describe the placement and transformation of the mesh’s coordinate sytem assuming at most 3 directions.

Why would you want to use these UVW mapping vectors the this rotation_matrix property? They allow us to define the realationship between local and global coordinate systems and provide a tool for switching between the two while still maintaing the connectivity of the mesh’s cells. For a visual example of this, please see the figure in the docs for the InterfaceVTK.

TensorMesh.tangents

Edge Tangents

Return type:numpy.ndarray
Returns:normals, (sum(nE), dim)
TensorMesh.vectorCCx

Cell-centered grid vector (1D) in the x direction.

TensorMesh.vectorCCy

Cell-centered grid vector (1D) in the y direction.

TensorMesh.vectorCCz

Cell-centered grid vector (1D) in the z direction.

TensorMesh.vectorNx

Nodal grid vector (1D) in the x direction.

TensorMesh.vectorNy

Nodal grid vector (1D) in the y direction.

TensorMesh.vectorNz

Nodal grid vector (1D) in the z direction.

TensorMesh.vnC

Total number of cells in each direction

Return type:numpy.ndarray
Returns:[nCx, nCy, nCz]
TensorMesh.vnE

Total number of edges in each direction

Returns:
  • vnE (numpy.ndarray = [nEx, nEy, nEz], (dim, ))
  • .. plot:: – :include-source:

    import discretize import numpy as np M = discretize.TensorMesh([np.ones(n) for n in [2,3]]) M.plotGrid(edges=True, showIt=True)

TensorMesh.vnEx

Number of x-edges in each direction

Return type:numpy.ndarray
Returns:vnEx
TensorMesh.vnEy

Number of y-edges in each direction

Return type:numpy.ndarray
Returns:vnEy or None if dim < 2
TensorMesh.vnEz

Number of z-edges in each direction

Return type:numpy.ndarray
Returns:vnEz or None if dim < 3
TensorMesh.vnF

Total number of faces in each direction

Return type:numpy.ndarray
Returns:[nFx, nFy, nFz], (dim, )
import discretize
import numpy as np
M = discretize.TensorMesh([np.ones(n) for n in [2,3]])
M.plotGrid(faces=True, showIt=True)

(Source code, png, hires.png, pdf)

../../_images/discretize-TensorMesh-3.png
TensorMesh.vnFx

Number of x-faces in each direction

Return type:numpy.ndarray
Returns:vnFx
TensorMesh.vnFy

Number of y-faces in each direction

Return type:numpy.ndarray
Returns:vnFy or None if dim < 2
TensorMesh.vnFz

Number of z-faces in each direction

Return type:numpy.ndarray
Returns:vnFz or None if dim < 3
TensorMesh.vnN

Total number of nodes in each direction

Return type:numpy.ndarray
Returns:[nNx, nNy, nNz]
TensorMesh.vol

Construct cell volumes of the 3D model as 1d array.

TensorMesh.x0

origin of the mesh (dim, ), a list or numpy array of <class ‘float’>, <class ‘int’> with shape (*)

Type:x0 (Array)

Methods

TensorMesh.copy(self)

Make a copy of the current mesh

classmethod TensorMesh.deserialize(value, trusted=False, strict=False, assert_valid=False, **kwargs)

Creates HasProperties instance from serialized dictionary

This uses the Property deserializers to deserialize all JSON-compatible dictionary values into their corresponding Property values on a new instance of a HasProperties class. Extra keys in the dictionary that do not correspond to Properties will be ignored.

Parameters:

  • value - Dictionary to deserialize new instance from.
  • trusted - If True (and if the input dictionary has '__class__' keyword and this class is in the registry), the new HasProperties class will come from the dictionary. If False (the default), only the HasProperties class this method is called on will be constructed.
  • strict - Requires '__class__', if present on the input dictionary, to match the deserialized instance’s class. Also disallows unused properties in the input dictionary. Default is False.
  • assert_valid - Require deserialized instance to be valid. Default is False.
  • Any other keyword arguments will be passed through to the Property deserializers.
TensorMesh.equal(self, other)

Determine if two HasProperties instances are equivalent

Equivalence is determined by checking if all Property values on two instances are equal, using Property.equal.

static TensorMesh.from_omf(element)

Convert an OMF element to it’s proper discretize type. Automatically determines the output type. Returns both the mesh and a dictionary of model arrays.

TensorMesh.getBCProjWF(self, BC, discretization='CC')

The weak form boundary condition projection matrices.

Example

# Neumann in all directions
BC = 'neumann'

# 3D, Dirichlet in y Neumann else
BC = ['neumann', 'dirichlet', 'neumann']

# 3D, Neumann in x on bottom of domain, Dirichlet else
BC = [['neumann', 'dirichlet'], 'dirichlet', 'dirichlet']
TensorMesh.getBCProjWF_simple(self, discretization='CC')

The weak form boundary condition projection matrices when mixed boundary condition is used

TensorMesh.getEdgeInnerProduct(self, prop=None, invProp=False, invMat=False, doFast=True)

Generate the edge inner product matrix

Parameters:
  • prop (numpy.ndarray) – material property (tensor properties are possible) at each cell center (nC, (1, 3, or 6))
  • invProp (bool) – inverts the material property
  • invMat (bool) – inverts the matrix
  • doFast (bool) – do a faster implementation if available.
Returns:

M, the inner product matrix (nE, nE)

Return type:

scipy.sparse.csr_matrix

TensorMesh.getEdgeInnerProductDeriv(self, prop, doFast=True, invProp=False, invMat=False)
Parameters:
  • prop (numpy.ndarray) – material property (tensor properties are possible) at each cell center (nC, (1, 3, or 6))
  • doFast (bool) – do a faster implementation if available.
  • invProp (bool) – inverts the material property
  • invMat (bool) – inverts the matrix
Returns:

dMdm, the derivative of the inner product matrix (nE, nC*nA)

Return type:

scipy.sparse.csr_matrix

TensorMesh.getFaceInnerProduct(self, prop=None, invProp=False, invMat=False, doFast=True)

Generate the face inner product matrix

Parameters:
  • prop (numpy.ndarray) – material property (tensor properties are possible) at each cell center (nC, (1, 3, or 6))
  • invProp (bool) – inverts the material property
  • invMat (bool) – inverts the matrix
  • doFast (bool) – do a faster implementation if available.
Returns:

M, the inner product matrix (nF, nF)

Return type:

scipy.sparse.csr_matrix

TensorMesh.getFaceInnerProductDeriv(self, prop, doFast=True, invProp=False, invMat=False)
Parameters:
  • prop (numpy.ndarray) – material property (tensor properties are possible) at each cell center (nC, (1, 3, or 6))
  • doFast – bool do a faster implementation if available.
  • invProp (bool) – inverts the material property
  • invMat (bool) – inverts the matrix
Returns:

dMdmu(u), the derivative of the inner product matrix for a certain u

Return type:

scipy.sparse.csr_matrix

TensorMesh.getInterpolationMat(self, loc, locType='CC', zerosOutside=False)

Produces interpolation matrix

Parameters:
  • loc (numpy.ndarray) – Location of points to interpolate to
  • locType (str) –

    What to interpolate (see below)

    locType can be:

    'Ex'    -> x-component of field defined on edges
    'Ey'    -> y-component of field defined on edges
    'Ez'    -> z-component of field defined on edges
    'Fx'    -> x-component of field defined on faces
    'Fy'    -> y-component of field defined on faces
    'Fz'    -> z-component of field defined on faces
    'N'     -> scalar field defined on nodes
    'CC'    -> scalar field defined on cell centers
    'CCVx'  -> x-component of vector field defined on cell centers
    'CCVy'  -> y-component of vector field defined on cell centers
    'CCVz'  -> z-component of vector field defined on cell centers
    
Returns:

M, the interpolation matrix

Return type:

scipy.sparse.csr_matrix

TensorMesh.getTensor(self, key)

Returns a tensor list.

Parameters:key (str) –

Which tensor (see below)

key can be:

'CC'    -> scalar field defined on cell centers
'N'     -> scalar field defined on nodes
'Fx'    -> x-component of field defined on faces
'Fy'    -> y-component of field defined on faces
'Fz'    -> z-component of field defined on faces
'Ex'    -> x-component of field defined on edges
'Ey'    -> y-component of field defined on edges
'Ez'    -> z-component of field defined on edges
Returns:list of the tensors that make up the mesh.
Return type:list
TensorMesh.isInside(self, pts, locType='N')

Determines if a set of points are inside a mesh.

Parameters:pts (numpy.ndarray) – Location of points to test
Return type:numpy.ndarray
Returns:inside, numpy array of booleans
TensorMesh.plotGrid(self, ax=None, nodes=False, faces=False, centers=False, edges=False, lines=True, showIt=False, **kwargs)

Plot the nodal, cell-centered and staggered grids for 1,2 and 3 dimensions.

Parameters:
  • nodes (bool) – plot nodes
  • faces (bool) – plot faces
  • centers (bool) – plot centers
  • edges (bool) – plot edges
  • lines (bool) – plot lines connecting nodes
  • showIt (bool) – call plt.show()
import discretize
import numpy as np
h1 = np.linspace(.1, .5, 3)
h2 = np.linspace(.1, .5, 5)
mesh = discretize.TensorMesh([h1, h2])
mesh.plotGrid(nodes=True, faces=True, centers=True, lines=True, showIt=True)

(Source code, png, hires.png, pdf)

../../_images/discretize-TensorMesh-4.png
import discretize
import numpy as np
h1 = np.linspace(.1, .5, 3)
h2 = np.linspace(.1, .5, 5)
h3 = np.linspace(.1, .5, 3)
mesh = discretize.TensorMesh([h1, h2, h3])
mesh.plotGrid(nodes=True, faces=True, centers=True, lines=True, showIt=True)

(Source code, png, hires.png, pdf)

../../_images/discretize-TensorMesh-5.png
TensorMesh.plotImage(v)

Plots scalar fields on the given mesh.

Input:

Parameters:v (numpy.ndarray) – vector

Optional Inputs:

Parameters:
  • vType (str) – type of vector (‘CC’, ‘N’, ‘F’, ‘Fx’, ‘Fy’, ‘Fz’, ‘E’, ‘Ex’, ‘Ey’, ‘Ez’)
  • ax (matplotlib.axes.Axes) – axis to plot to
  • showIt (bool) – call plt.show()

3D Inputs:

Parameters:
  • numbering (bool) – show numbering of slices, 3D only
  • annotationColor (str) – color of annotation, e.g. ‘w’, ‘k’, ‘b’
import discretize
import numpy as np
M = discretize.TensorMesh([20, 20])
v = np.sin(M.gridCC[:, 0]*2*np.pi)*np.sin(M.gridCC[:, 1]*2*np.pi)
M.plotImage(v, showIt=True)

(Source code, png, hires.png, pdf)

../../_images/discretize-TensorMesh-6.png
import discretize
import numpy as np
M = discretize.TensorMesh([20, 20, 20])
v = np.sin(M.gridCC[:, 0]*2*np.pi)*np.sin(M.gridCC[:, 1]*2*np.pi)*np.sin(M.gridCC[:, 2]*2*np.pi)
M.plotImage(v, annotationColor='k', showIt=True)

(Source code, png, hires.png, pdf)

../../_images/discretize-TensorMesh-7.png
TensorMesh.plotSlice(self, v, vType='CC', normal='Z', ind=None, grid=False, view='real', ax=None, clim=None, showIt=False, pcolorOpts=None, streamOpts=None, gridOpts=None, range_x=None, range_y=None, sample_grid=None, stream_threshold=None, stream_thickness=None)

Plots a slice of a 3D mesh.

(Source code, png, hires.png, pdf)

../../_images/discretize-TensorMesh-8.png
TensorMesh.plot_3d_slicer(self, v, xslice=None, yslice=None, zslice=None, vType='CC', view='real', axis='xy', transparent=None, clim=None, xlim=None, ylim=None, zlim=None, aspect='auto', grid=[2, 2, 1], pcolorOpts=None, fig=None)

Plot slices of a 3D volume, interactively (scroll wheel).

If called from a notebook, make sure to set

%matplotlib notebook

See the class discretize.View.Slicer for more information.

It returns nothing. However, if you need the different figure handles you can get it via

fig = plt.gcf()

and subsequently its children via

fig.get_children()

and recursively deeper, e.g.,

fig.get_children()[0].get_children().

One can also provide an existing figure instance, which can be useful for interactive widgets in Notebooks. The provided figure is cleared first.

TensorMesh.projectEdgeVector(self, eV)

Given a vector, eV, in cartesian coordinates, this will project it onto the mesh using the tangents

Parameters:eV (numpy.ndarray) – edge vector with shape (nE, dim)
Return type:numpy.ndarray
Returns:projected edge vector, (nE, )
TensorMesh.projectFaceVector(self, fV)

Given a vector, fV, in cartesian coordinates, this will project it onto the mesh using the normals

Parameters:fV (numpy.ndarray) – face vector with shape (nF, dim)
Return type:numpy.ndarray
Returns:projected face vector, (nF, )
TensorMesh.r(self, x, xType='CC', outType='CC', format='V')

r is a quick reshape command that will do the best it can at giving you what you want.

For example, you have a face variable, and you want the x component of it reshaped to a 3D matrix.

r can fulfil your dreams:

mesh.r(V, 'F', 'Fx', 'M')
       |   |     |    |
       |   |     |    {
       |   |     |      How: 'M' or ['V'] for a matrix
       |   |     |      (ndgrid style) or a vector (n x dim)
       |   |     |    }
       |   |     {
       |   |       What you want: ['CC'], 'N',
       |   |                       'F', 'Fx', 'Fy', 'Fz',
       |   |                       'E', 'Ex', 'Ey', or 'Ez'
       |   |     }
       |   {
       |     What is it: ['CC'], 'N',
       |                  'F', 'Fx', 'Fy', 'Fz',
       |                  'E', 'Ex', 'Ey', or 'Ez'
       |   }
       {
         The input: as a list or ndarray
       }

For example:

# Separates each component of the Ex grid into 3 matrices
Xex, Yex, Zex = r(mesh.gridEx, 'Ex', 'Ex', 'M')

# Given an edge vector, return just the x edges as a vector
XedgeVector = r(edgeVector, 'E', 'Ex', 'V')

# Separates each component of the edgeVector into 3 vectors
eX, eY, eZ = r(edgeVector, 'E', 'E', 'V')
TensorMesh.readModelUBC(mesh, fileName, directory='')
Read UBC 2D or 3D Tensor mesh model
and generate Tensor mesh model

Input: :param str fileName: path to the UBC GIF mesh file to read or just its name if directory is specified :param str directory: directory where the UBC GIF file lives

Output: :rtype: numpy.ndarray :return: model with TensorMesh ordered

classmethod TensorMesh.readUBC(fileName, directory='')

Wrapper to Read UBC GIF 2D and 3D tensor mesh and generate same dimension TensorMesh.

Input: :param str fileName: path to the UBC GIF mesh file or just its name if directory is specified :param str directory: directory where the UBC GIF file lives

Output: :rtype: TensorMesh :return: The tensor mesh for the fileName.

classmethod TensorMesh.readVTK(filename, directory='')

Read VTK Rectilinear (vtr xml file) and return Tensor mesh and model

Parameters:
  • filename (str) – path to the vtr model file to read or just its name if directory is specified
  • directory (str) – directory where the UBC GIF file lives
Returns:

(TensorMesh, modelDictionary)

Return type:

tuple

classmethod TensorMesh.read_vtk(filename, directory='')

Read VTK Rectilinear (vtr xml file) and return Tensor mesh and model

Parameters:
  • filename (str) – path to the vtr model file to read or just its name if directory is specified
  • directory (str) – directory where the UBC GIF file lives
Returns:

(TensorMesh, modelDictionary)

Return type:

tuple

TensorMesh.save(self, filename='mesh.json', verbose=False)

Save the mesh to json :param str file: filename for saving the casing properties :param str directory: working directory for saving the file

TensorMesh.serialize(self, include_class=True, save_dynamic=False, **kwargs)

Serializes a HasProperties instance to dictionary

This uses the Property serializers to serialize all Property values to a JSON-compatible dictionary. Properties that are undefined are not included. If the HasProperties instance contains a reference to itself, a properties.SelfReferenceError will be raised.

Parameters:

  • include_class - If True (the default), the name of the class will also be saved to the serialized dictionary under key '__class__'
  • save_dynamic - If True, dynamic properties are written to the serialized dict (default: False).
  • Any other keyword arguments will be passed through to the Property serializers.
TensorMesh.setCellGradBC(self, BC)

Function that sets the boundary conditions for cell-centred derivative operators.

Example

..code:: python

# Neumann in all directions BC = ‘neumann’

# 3D, Dirichlet in y Neumann else BC = [‘neumann’, ‘dirichlet’, ‘neumann’]

# 3D, Neumann in x on bottom of domain, Dirichlet else BC = [[‘neumann’, ‘dirichlet’], ‘dirichlet’, ‘dirichlet’]

TensorMesh.toVTK(mesh, models=None)

Convert this mesh object to it’s proper VTK or pyvista data object with the given model dictionary as the cell data of that dataset.

Parameters:models (dict(numpy.ndarray)) – Name(‘s) and array(‘s). Match number of cells
TensorMesh.to_omf(mesh, models=None)

Convert this mesh object to it’s proper omf data object with the given model dictionary as the cell data of that dataset.

Parameters:models (dict(numpy.ndarray)) – Name(‘s) and array(‘s). Match number of cells
TensorMesh.to_vtk(mesh, models=None)

Convert this mesh object to it’s proper VTK or pyvista data object with the given model dictionary as the cell data of that dataset.

Parameters:models (dict(numpy.ndarray)) – Name(‘s) and array(‘s). Match number of cells
TensorMesh.validate(self)

Call all registered class validator methods

These are all methods decorated with @properties.validator. Validator methods are expected to raise a ValidationError if they fail.

classmethod TensorMesh.vtk_to_tensor_mesh(vtrGrid)

Converts a vtkRectilinearGrid or pyvista.RectilinearGrid to a discretize.TensorMesh object.

TensorMesh.writeModelUBC(mesh, fileName, model, directory='')

Writes a model associated with a TensorMesh to a UBC-GIF format model file.

Input: :param str fileName: File to write to or just its name if directory is specified :param str directory: directory where the UBC GIF file lives :param numpy.ndarray model: The model

TensorMesh.writeUBC(mesh, fileName, models=None, directory='', comment_lines='')

Writes a TensorMesh to a UBC-GIF format mesh file.

Input: :param str fileName: File to write to :param str directory: directory where to save model :param dict models: A dictionary of the models :param str comment_lines: comment lines preceded with ‘!’ to add

TensorMesh.writeVTK(mesh, filename, models=None, directory='')

Makes and saves a VTK object from this mesh and given models

Parameters:
  • filename (str) – path to the output vtk file or just its name if directory is specified
  • models (dict) – dictionary of numpy.array - Name(‘s) and array(‘s). Match number of cells
  • directory (str) – directory where the UBC GIF file lives
TensorMesh.write_vtk(mesh, filename, models=None, directory='')

Makes and saves a VTK object from this mesh and given models

Parameters:
  • filename (str) – path to the output vtk file or just its name if directory is specified
  • models (dict) – dictionary of numpy.array - Name(‘s) and array(‘s). Match number of cells
  • directory (str) – directory where the UBC GIF file lives